

MODI: Use cases

28/03/2023

Petter Arnesen, SINTEF

MODI use cases

Demonstrere og evaluere på nivå 4 (L4)

Kilde: Einride

Overall - Challenges

- a. New business models for logistic operation
- b. Steps towards L4 motorway automated driving
- c. Standardization and harmonization
- d. Seamless integration of the PDI and the vehicles

MODI CCAM test corridor from Rotterdam to Oslo

- a. Identify critical parts PDI along the total corridor
- b. Solutions by cocreation between all stakeholders

UC Norway - Challenges

- a. Border crossing
- b. PDI infrastructure needed for level 4
- c. Seamless integration of automated subcomponents of the transport chain

UC Sweden - Challenges

- a. Access to confined area through gate
- b. Loading and unloading pallets and container
- c. Automated charging

UC Germany – Challenges

- a. Transition from Highway to confined area
- b. Reducing traffic load of HGV through the city
- c. Automated approach to charging area

UC The Netherlands - Challenges

- a. Coordinated Automated Driving on confined area
- b. Mixed traffic of manual operated and CCAM vehicles
- c. Logistic CCAM service for mix of confined area and public road destination



0

No Automation

Zero autonomy; the driver performs all driving tasks.

Driver Assistance

Vehicle is controlled by the driver, but some driving assist features may be included in the vehicle design. artial

Partial Automation

2

Vehicle has combined automated functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment at all times.

3

Conditional Automation

Driver is a necessity, but is not required to monitor the environment. The driver must be ready to take control of the vehicle at all times with notice.

4

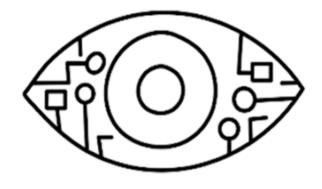
High Automation

The vehicle is capable of performing all driving functions under certain conditions. The driver may have the option to control the vehicle.

5

Full Automation

The vehicle is capable of performing all driving functions under all conditions. The driver may have the option to control the vehicle.


Kjerneteknologier for automatisert transport

Positioning

Communication

Human machine-readable infrastructure

Bilde: Tomas Levin

Portefølje

- Kjerneteknologier for automatisert transport

1 "Fremtidens behov for kommunikasjon i transportsektoren" Lambda

2019-2022

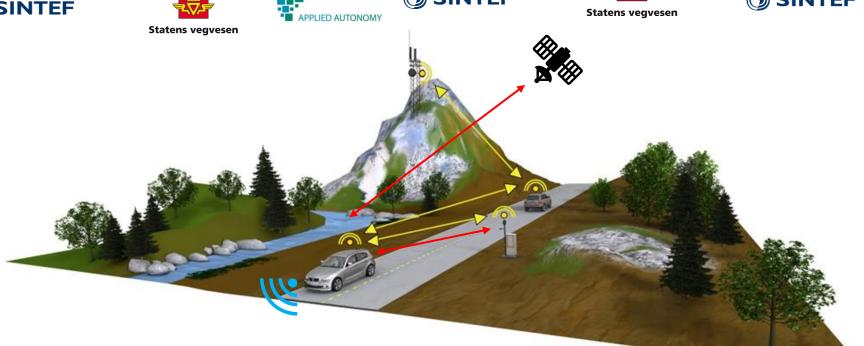
Statens vegvesen

Forskningsrådet

2 "Technology for advanced positioning in the transport system" **TEAPOT**

2020-2023

SINTEF


3 "Machine Sensible infrastructure under Nordic conditions" **MCSINC**

2022-2025

Portefølje

- Kjerneteknologier for automatisert transport

1 "Fremtid kommunik transports

2019-202

Høyt fokus på

pilotering og uttesting

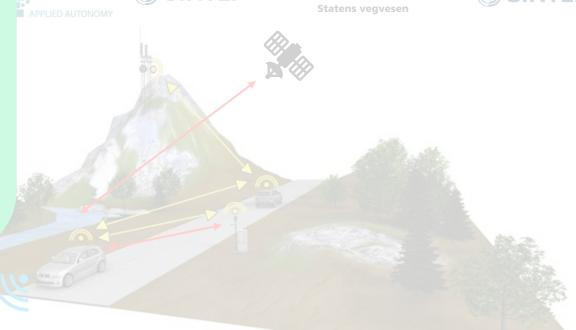
og

samhandling på tvers av

relevante aktører

logy for advanced in the transport **APOT**

NII 🥳


3 "Machine Sensible infrastructure under Nordic conditions" **MCSINC**

2022-2025

Portefølje


- Kjerneteknologier for automatisert transport

1 "Fremtid kommunik transports 2019-202

Høyt fokus på

pilotering og uttesting

og

samhandling på tvers av

relevante aktører

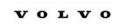
ogy for advanced in the transport **APOT**

Hovedaktiviteter SINTEF:

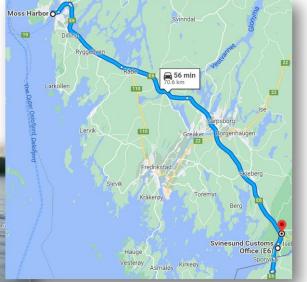
og
Leder WP2 "Use case definition
and impact assessment" inkludert
samhandlingsarenaer



Public roads: Prioritized L4 roads



\ einride



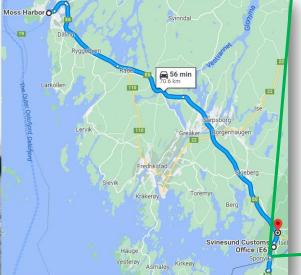
AISIKIO

Autonomous sea drones

In line with the call: focus on cocreation between stakeholders

Border crossing

Public roads: Prioritized L4 roads


HAV

AISIKIO

Autonomous sea drones

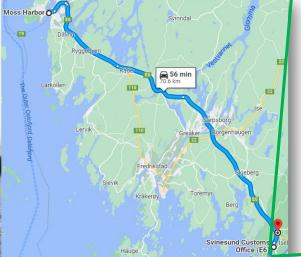
In line with the call: focus on cocreation between stakeholders

Map data, reference frame, point cloud

Border crossing

Læringer på tvers av landegrenser: Oppkobling GNSS Tillatelse Fjern-grensesnitt (remote operator interface)

Public roads: Prioritized L4 roads



AISIKIO

Autonomous sea drones

In line with the call: focus on cocreation between stakeholders

Læringer ved toll:

C-ITS løsninger

kontrollører

Lov og regulering uten sjåfør

Digital toll prosess - Digitall

Behov for interaksjon med

Border crossing

Public roads: Prioritized L4 roads

Moss Harbor

Sikkerhets-case for kjøring i høyere hastigheter Krav til PDI Teknologiske og regulatoriske gap

MOSS HAVN A S K O

Autonomous sea drones

Kartverket Map data, reference frame, point cloud

Border crossing

In line with the call: focus on cocreation between stakeholders

AISIKIO

Autonomous sea drones

In line with the call: focus on cocreation between stakeholders

Kartverket Map data, reference frame, point cloud

Border crossing

Læringer i tilknytningen til havn: Utforske verdien av heleelektrisk og helautomatisert transportkjede

Moss Ferjekai

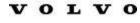
Offentlig vei: Hvor klargjort er korridoren for kjøring på nivå 4?

Undersøke PDI og kjøretøy, samt deres samspill, for nivå 4 på strekningen Rotterdam-Oslo

Gjennomføre datainnsamling og analyse.

TRAFIKVERKET

Assessment of CCAM-implementation along MODI-corridor



Hovedperspektiver:

Kjøretøysprodusenter (VOLV, EIN, and DAF) Veimyndigheter (NMIW, VEJ, STA, BAST and NPRA) Logistikkoperatører (DFDS, ALI and GRU) Teknologileverandører (Q-Free) FoU (SINTEF, BAST)

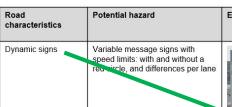
Høna og egget

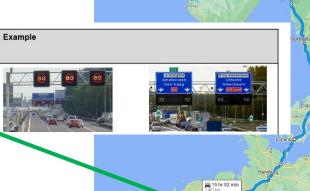
OEM + Teknologiperspektiv:

Myndighetsperspektiv:

Hva kan vi få, og hva er kravene?

Hva trenger dere, og hva kan dere få til?


Høna og egget


OEM + Teknologiperspektiv:

Please fill out the table below

Pain points – road elements – What is difficult?	Why is it difficult?	Suggestions for how to fix what is difficult - optional	Pain level – light, medium, hard
Tunnels (example!)	Loss of GNSS, light,	Augmented GNSS signals ITS-G5, sensor in vehicle for navigation (<u>e.g.</u> LiDAR),	Medium

Myndighetsperspektiv:

Felles forståelse og fremgangsmåte

Datainnsamling og analyse

THANKS FOR YOUR TIME!

Presenter Petter Arnesen

E-mail petter.arnesen@sintef.no

Website www.linkedin.com/in/petterarnesen111

